
To appear in IEEE Trans. on Computers, 1989.

/ / /']//_i]

ADAPTIVE FAULT-TOLERANT ROUTING

IN HYPERCUBE MULTICOMPUTERS //j-

Ming-Syan Chen* and Kang G. Shin t

t Real-Time Computing Laboratory

Department of Electrical Engineering and Computer Science

The University of Michigan

Ann Arbor, Michigan 48109-2122

_: I.B.M. Thomas J. Watson Research Center

P.O. Box 704

Yorktown Heights, New York 10598

/

?

b,,

L

ABSTRACT

A connected hypercube with faulty links and/or nodes is called an injured hypercube. To
enable any non-faulty node to communicate with any other non-faulty node in an injured hypcr-
cube, the information on component failures has to be made available to non-faulty nodes so as to
route messages around the faulty components.

We propose first a distributed adaptive fault-tolerant routing scheme for an injured hyper-

cube in which each node is required to know only the condition of its own links. Despite its sim-
plicity, this scheme is shown to be capable of routing messages successfully in an injured hyper-

cube as long as the number of faulty components is less than n. Moreover, it is proved that this

scheme routes messages via shortest paths with a rather high probability and the expected length
of a resulting path is very close to that of a shortest path. Since the assumption that the number
of faulty components is less than n in an n-dimensional hypercube might limit the usefulness of

the above scheme, we also introduce a routing scheme based on depth-first search which works in
the presence of an arbitrary number of faulty components.

Due to the insufficient information on faulty components, however, the paths chosen by the

above scheme may not always be the shortest. To guarantee all messages to be routed via shor-
test paths, we propose to equip every node with more information than that on its own links. The
effects of this additional information on routing efficiency are analyzed, and the additional infor-

mation to be kept at each node for the shortest path routing is determined. Several examples and
remarks are also given to illustrate bur results.

Index Terms: Injured and regular hypercubes, distributed adaptive fault-tolerant routing, dcpth-
first search, looping effects, network delay tables, failure information.

This work was supported in part by the Office of Naval Research under contracts N00014-85-K-0122 and N00014-85-K-0531,
and the NASA under grant NAG-i-296. Any opinions, findings, and conclusions or recommendations expressed in this publication

are those of the authors and do not necessarily reflect the view of the funding agencies.

uns 1,:,s
r,.:_/ oO 0292Z3_

February 9, 1989

1. INTRODUCTION

In recent years, advances of VLSI and computer networking technologies have made it

attractive to build multicomputer systems for numerous applications. Hypercube multicomputcrs,

among others, have been drawing considerable attention due mainly to their structural regularity

for easy construction and high potential for the parallel execution of various algorithms I1,2, 3].

Numerous research projects related to hypercube architectures, operating systems, and progr_m-

ming languages have been undertaken [4,5,6,7,8,9], and several research and commercial

hypercube multicomputers have been built [10, 11].

Efficient routing of messages is a key to the performance of a multicomputer system. Espe-

cially, the increasing use of multicomputer systems for reliability-critical applications has made it

essential to design fault-tolerant routing strategies for such systems. By fault-tolerant routing, wc

mean the successful routing of messages between any pair of non-faulty nodes in the presence of

faulty components (links and/or nodes). Several important results on the fault-tolerant routing in

various networks have been reported [12, 13, 14]. A few architectures are also proposed and

shown to possess fault-tolerant muting capabilities [15, 16, 17, 18]. When hypercube multicom-

puters are to be used for reliable applications, they must be made to be able to route messages

even in the presence of faulty links and nodes.

A connected hypercube with faulty components is called an injured hypercube, whcrcas a

hypercube without faulty components is called a regular hypercube. It is well-known that rout-

ing in a regular hypercube can be handled by a systematic procedure [9]. Some results on

improving the muting efficiency in regular hypercubes are reported in [19]. Routing in an incom-

plete hypercube is also shown to be straightforward [20]. In a regular hypercube, each intermedi-

ate node can determine the next hop of a message by examining the message's destination

address and choosing, from all its neighboring nodes, the one which is closest to the destination.

Clearly, this can be accomplished by aligning the address of the source node with that of the des-

February 9, 1989

tination node from right to left bit-by-bit. However, this scheme becomes invalid in an injurcd

hypercube, since the message may be routed to a faulty component. In order to enable non-faulty

nodes in an injured hypercube to communicate with one another, enough network information has

to be incorporated into either the message to be routed or each node in the network so as to route

messages around the faulty components. Using additional hardware called a hyperswitch, a best-

first search algorithm for routing messages in a hypercube is developed in [12]. Several adaptive

packet routing algorithms are also presented in [21], which are based on the routing stratcgics

used for wide-area computer networks such as ARPANET. In addition, various algorithms are

proposed in [14, 22] to broadcast the information about faulty components to all the other nodcs

in a hypercube so that messages can be routed around the faulty components. Clearly, if each

node is equipped with the information on all faulty components, then it can always determine a

fault-free path for every message to its destination. However, it is usually too costly (in space

and time) to equip every node with the information on all faulty components, especially when the

network is large. Hence, it is important to develop routing schemes which require each nodc to

keep only the failure information essential for making correct routing decisions.

For the reasons above, we shall develop first a routing scheme which requires each node to

know only the condition of its own links. As will be seen later, this scheme attempts to route

every message to its destination via an optimal path which is defined as a path of length equal to

the Hamming distance 1 between the message's source and destination nodes. Whcn the

insufficient knowledge on faulty components causes a message to be sent to an intermediate node

from which there is no optimal path to the destination node, an alternative path will be chosen in

such a way that the connectivity of a hypercube is fully exploited, and those faulty components

encountered before will not be encountered again in future. This scheme is proven to bc capable

of routing messages between any pair of non-faulty nodes as long as the total number of faulty

components is less than n in an n-dimensional hypercube, Qn. More importantly, this scheme,

JTo be defined formally in the next section.

February 9, 1989

despite its simplicity, is shown to be very powerful in that the probability of routing messages via

shortest paths is very high and the expected length of a resulting path is very close to the optimal

one. To route a message in an injured hypercube, the information on component failures is incor-

porated into the message as the message travels toward the destination. This fact distinguishcs

our approach from others, such as those in [12, 21].

The assumption that the number of faulty components is less than n in an injured Q, could

limit the usefulness of the above algorithm. To remove this limitation, we introduce a second

routing scheme based on depth-first search which requires more provisions but works in the pres-

ence of an arbitrary number of faulty components. Since the performance analysis we developed

for the first routing scheme can be extended for the routing scheme based on depth-first search,

the performance analysis of the latter is not included in this paper.

Due to the absence of information on all faulty components in the network, the paths chosen

by the above two schemes may not be shortest. The efficiency of routing (measured in terms of

the length of a path chosen) can be improved if every non-faulty node is equipped with more

information than that on its own links, since in such a case the faulty components on the way of

every message to its destination can be foreseen, and thus, bypassed. It can be observed that the

abundant connections in a hypercube usually make routing decisions in a node unaffected by the

failure of a component which is located far away from the node. Based on this observation, we

shall develop a third routing scheme for which each node is required to keep only the information

essential for the shortest path routing of messages. The information in each node required for the

shortest path routing will be determined in light of some properties of the hypcrcube. Sincc the

third method is again based on the assumption that the total number of faulty components is less

than n in an injured Qn, we introduce a fourth routing scheme which uses nctwork delay tables

[23] and works in the presence of an arbitrary number of faulty components. However, this

scheme requires each node to maintain and update a delay table, which could be costly for large

hypercubes.

February 9,1989

The paper is organized as follows. Necessary notation and definitions are given in Section

2. We shall present in Section 3 an adaptive fault-tolerant routing scheme which requires each

node to know only the condition of its own links. An alternative routing scheme based on depth-

first search is a/so introduced and discussed there. Section 4 presents two faulHolerant routing

schemes which require each node to include more information than that on its own links: one

with propagation of failure information, and the other with network delay tables. Illustrativc

examples and some remarks are also given. The paper concludes with Section 5.

2. PRELIMINARIES

An n-dimensional hypercube (or n-cube or Qn) is formally defined as follows.

Definition 1: An n-cube, Qn, is defined recursively as follows.

(i) Qo is a trivial graph with one node, and

(ii) Qn = K2 × Qn-l,

where K 2 is the complete graph with two nodes, Qo is a trivial graph with one node and × is the

product operation of two graphs [24].

It follows from Definition 1 that a Qn contains 2n nodes and n2 n-t links since the degrce of

each node in a Qn is n. Let _ be the ternary symbol set {0, 1, *}, where * is a don't care symbol.

Every subcube in a Qn can then be uniquely represented by a string of symbols in y'.. Such a

string of ternary symbols is called the address of the corresponding subcube. For examplc, thc

address of the subcube 0.2 formed by nodes 0010, 13011, 0110 and 0111 in a Q4 iS 0* 1". Fig. 1

shows a Q2 with address 0'1" in a Q4- The rightmost coordinate of the address of a subcube will

be referred to as dimension 1, and the second rightmost coordinate as dimension 2, and so on. For

each hypercube node, the communication link in dimension i is called the i-th link of this node.

For notational simplicity, each link is represented by a binary string with a '-' symbol in thc

corresponding dimension. For example, the link between nodes 0000 and 0010 is reprcsentcd by

February9, 1989

00-0. Let r+ and r- denote the two end nodes of a link r, where r+ (r'-) represents the node whose

address is obtained by changing the '-' symbol in the link's address to 0 (1).

Definition2: The Hamming distance between two hypercube nodes with addresses

u = UnUn_l • • • u 1 and w = wnwn_ l • • • w 1 in a Q_ is defined as

. [" 1, ifu i_w i,

H(u, w) = _h(u i, wi), where h(ui,wi) = (0, if ui = Wi.i=l

For the nature of distributed routing strategies to be presented, it is necessary to introduce

the exclusive operation between two binary strings, and the concept of relative address between

two hypercube nodes.

Definition 3: The exclusive operation of two binary strings q= qnqn-t'"ql and

m = mnmn_ 1 • • • m 1, denoted by q@m = rnrn_1 • • • rb is defined as r i = 0 if Ch= mi and r i = 1 if

qi = mi for I <i<n.

Obviously, the exclusive operation is commutative, i.e., q@m = m@q. We use i_k=l tO

denote k sequential exclusive operations. The relative address of a node u with respect to anothcr

node w, denoted by U/w, can then be determined by U/w= u@w. The relative address ofa subcube

with respect to a node u can be determined by the relative addresses of all the nodes it contains.

Let ek = e,en-l""el where ek=l and ej=0 V j _ k. For example, 1001 @e 2 = 1011,

0011/10o 1= 1010, and 0"1"/loo 1 = 1"1".

Definition 4: The spanning subcube of two nodes u = UnUn_ 1 • • • u I and w = wnwn_ l ' • • w 1

in a Qn, denoted by SQ(u,w) = SnSn-I " " " Sl, is defined as si = ui ifui = wi, and si = * if ui _ wi for

l<i<n.

For example, when u = 0010 and w = 0111, we get H(u,w) = 2 and SQ(u,w) = 0* 1'. It is

easy to see that SQ(u,w) is the smallest subcube that contains both u and w, and H(u,w) is the

dimension of SQ(u,w).

February9,1989

A path in a hypercube is represented by a sequence of nodes in which every two consecu-

tive nodes are physically adjacent to each other in the hypercube. The number of links on a path

is called the length of the path. An optimal path is a path whose length is identical to the Ham-

ming distance between the source and destination nodes. A shortest path is a path of minimal

length among all fault-free paths from the source to the destination. Clearly, an optimal path is a

shortest path, but a shortest path is not always an optimal path in an injured hypercube. Also, a

link of node u is said to be toward any node w if this link is in an optimal path between u and w.

Note that due to the special structure of a hypercube, once the source node of a path is given, the

path can be described by a coordinate sequence that represents the order of the dimensions in

which every two consecutive nodes in a path differ [25]. As shown in Fig. 2, [0001, 0011,0010,

1010] is an optimal path from the source node 0001 to the destination node 1010, and can also bc

represented by a coordinate sequence [2, 1, 4]. In addition, we shall assume that the source and

destination nodes are non-faulty.

3. ROUTING WITH INFORMATION ON LOCAL LINK FAILURES

In this section, we first develop and analyze an adaptive routing algorithm, called Algorithm

A l, which requires every node to know only the condition of its own links. This algorithm will

be shown to successfully route messages between any pair of non-faulty nodes as long as the

number of faulty components is less than n in a Qn. AS mentioned earlier, the assumption of the

total number of faulty components to be less than n in a Qn may limit the usefulness of A_. Thus,

we shall intorduce a second muting scheme based on depth-first search which works in the pres-

ence of an arbitrary number of faulty elements. However, due to the insufficient amount of infor-

mation on faulty components, the paths chosen by these two algorithm may not always be the

shortest.

February 9, 1989

3.1. Description of Algorithm A l

Before describing Algorithm A i, it is necessary to introduce the following lemma which

determines relative addresses of those nodes traversed by a given path.

Lemma 1: Let [c1, c2, • • •, Ck] be the coordinate sequence of a given path in a Q, starting

from node u, and W/u = WnWn-i " " • wl denote the relative address of node w with respect to u,

where k=H(u,w). Then, the path specified by [cl, ca,..',ck] ends at w if and only if

___1ee' = W/u.

Proof" Traversal of a message along the i-th dimension is the same as inverting the bit in

the i-th coordinate of the relative address of its destination. Therefore, traveling along a certain

dimension an even number of times has the same effect as not traveling along that dimension at

all, and thus, this lemma follows. Q.E.D.

For example, a path with the coordinate sequence [3, 4, 2] from 0110 will traverse nodes

0010, 1010 and then 1000. The following theorem, which was previously introduced in [26], is

useful for our discussion that follows.

Theorem 1 [26]: Let u and w be two arbitrary nodes in a Q_ such that H(u,w) = k. Thcn,

there are exactly n disjoint paths of length less than or equal to k+2 from u to w. These paths are

composed of k disjoint paths of length k, and (n - k) disjoint paths of length k+2.

Fig. 3 gives an example for 4 disjoint paths in a Q4 when H(u,w) = H(0000, 011 l) = 3.

Theorem 1 leads to the following corollary.

Corollary 1.1: Let f be the number of faulty links and g be the number of faulty nodes in

an injured Qn such that f + g < n. Then, there always exists at least one path of length less than or

equal to k+2 between any two non-faulty nodes u and w, where H(u,w) = k.

February 9,1989

We can now describe Algorithm A 2 as follows. To indicate the destination of a message,

the coordinate sequence of a path is sent along with the message. Additionally, each message is

accompanied with an n-bit vector tag = dndn_ 1 • • • d ! which keeps track of "spare dimensions"

that are used to bypass faulty components. All bits in the tag are reset to zero when the source

node begins muting of a message. Therefore, such a message can be represented as (k,

[c t, c2, . • •, ck], message, tag), where k is the length of the remaining portion of the path and is

updated as the message travels towards the destination. A message reaches its destination when k

becomes zero.

When a node receives a message, it will check the value of k to see if the node is the desti-

nation of the message. If not, the node will try to send the message along one of those dimen-

sions specified in the remaining coordinate sequence. (Note that the coordinate sequence will

also be updated as the message travels through the hypercube.) Each node will attempt to route

messages via shortest paths first. However, if all the links in those dimensions leading to shortest

paths are faulty, the node will use a spare dimension to route the message via an alternative path.

(Recall that the spare dimensions are kept track of by a tag.) More formally, this routing scheme

can be described in algorithmic form as follows.

Algorithm AI: Fault-tolerant muting algorithm to be used by each node only with the informa-
tion on its own links.

/* For each node receiving (k, [c i, c2,. • • , Ck], message, tag) */
if k=0 then {the destination is reached?}

else begin

/* Try to send the message along a dimension in the remaining coordinate sequence. */
for j := 1, k do

if (the cj-th link is not faulty) then (t)
/* (J') is a conditional statement which will be modified later in Section 4.1. */

begin

send (k-l, [cl,. • • cj-l,cj+l, • • •, ck], message, tag) along the cj-th link;

stop; /* terminate Algorithm A l */

end_begin

February 9,1989

end do

/* If the algorithm is not terminated yet, all dimensions in the coordinate sequence are
blocked because of faulty components and a spare dimension needs to be used. */

for j := 1, k do/* record all blocked dimensions in tag. */

d_ := 1

enddo;

h := rain {i : d i = 0, 1 -< i -<n};/* choose a spare dimension */

d h "= 1;/* update the tag */

send (k+l, [c1,c2 • .., Ck, hi, message, tag) along the h-th link;

stop;/* terminate Algorithm A i */

end_begin

Consider the Q4 in Fig. 4, where links 0-01, 1-01 and 100- are faulty. Suppose a mcssage,

fm, is routed from u = 0110 to w = 1001. The original message in u = 0110 is (4, [1,2,3,4], fin,

0000). Following the execution of A 1, node 0110 sends (3, [2,3,4], fro, 0000) to node 0111 which

then sends (2, [3,4], fm, 13000) to node 0101. Since the 3-rd dimensional link of 0101 is faulty,

node 0101 will route (1, [3], fm, 0000) to 1101. However, since the 3-rd dimensional link of

1101 is faulty, node 1101 will use the 1-st dimension (tag = 0100 then), and send (2, [3,1], fro,

0101) to 1100, which will, in turn, send (1, [1], fm, 0101) to 1000. Again, the first link of node

1000 is faulty. The 2-nd dimension (tag= 0101 then) will be used and (2, [1,2], fm, 0111) is

routed to 1010. After this, the message will reach the destination 1001 via 1011. The length of

the resulting path is 8.

3.2. Performance Analysis of Algorithm AI

The following theorem proves that Algorithm AI can route messages between any two

non-faulty nodes as long as the number of faulty components is less than n.

Theorem 2: Algorithm A t can always route messages between any two non-faulty nodes

successfully as long as the number of faulty components is less than n, i.e., f + g < n, where f and

g are the numbers of faulty links and faulty nodes in a Qn, respectively.

February 9,1989

Proof: Note that each node will try to use a spare dimension only when faulty componcnts

are encountered in all the dimensions specified by the coordinate sequence. Those faulty corn-

ponents which block the optimal paths from an intermediate node to the destination node and

force the first use of a spare dimension are called type-A blocking components. On the other

hand, a faulty component is said to be type-B if it is encountered first after using a new sparc

dimension. For the example routing in Fig. 4, 1-01 is a type-A blocking component and 100- is a

type-B blocking component, whereas the faulty link 0-01 is neither type-A nor type-B. For thc

example in Fig. 5 where u = 0000 and w = 1111, 0-11 and -011 are type-A blocking components

while 111- is a type-B blocking component. Notice that both the types of blocking components

can be either faulty nodes or faulty links. Thus, it is easy to see that the number of both typc-A

and type-B blocking components in the route determined by A: usually increases as the message

is routed towards its destination.

Let bh be a type-B blocking component which is encountered first after using a new spare

dimension h. We claim that the blocking component th does not belong to the set of those block-

ing components that had already been encountered before. This claim is proved by considering

two possible cases of bh: (i) th is a link of the destination node, and (ii) b h is not a link of the dcs-

tination node. In the case of (i), bh is the h-th link of the destination node. Since dh of tag was 0

before the spare dimension h is used, this faulty link had definitely not been encountered bcforc.

In the case of (ii), since th is the blocking component encountered first after using the spare

dimension h, th and the set of previous blocking components must be located in the two diffcrcnt

Q_-I's separated by the dimension h. The claim is thus proved. Since a certain faulty componcnt

will not be encountered more than once as long as the number of faulty components is less than n,

this theorem thus follows. Q.E.D.

The corollary below follows from Theorem 2 and the fact that the number of hops is

increased by two whenever a spare dimension is used.

10

February 9, 1989

Corollary 2.1: Suppose k spare dimensions are used for routing a message from node u to

node w by Az. Then, the length of the resulting path is H(u,w) + 2k.

It can be easily verified that the worst case of Algorithm A 1 needs H(u,w) + 2(n-l) steps to

send a message from u to w. To facilitate our presentation, the first node which is forced to use a

spare dimension is called an obstructed node. For example, the obstructed nodes in the examples

of Figs. 4 and 5 are 1101 and 0011, respectively. Then, we have the following lemma.

Leroroa 2: Suppose there are f faulty links in a Q,, and a message is routed by Al from

node u to node w, where H(u,w) = k. Let m A be the Hamming distance between the obstructed

< L-j L <_j <node and the destination node. Then, P(mA=j) _ Cf_j/Cf if 1 k, and P(mA=j) = 0 if j > k,

where C_ represents the combinations of choosing y out of x possibilities, and L = n2n-1 is the

number of links in a Q.,

Proof." P(m A > k) = 0, since the inequality m A > k represents an impossible case in which a

message is not directed towards its destination before encountering the obstructed node. Con-

sider the case of 1 < j < k and assume there are f faulty links in an injured Qn. Since these faults

may occur at any f links in the Qn, there are CfL different configurations (of faulty links) where

L = n2 r'-t. Without loss of generality, we can let u = 0_ and w = 0_-kl k. The problem of obtain-

ing P(mA= j) is then reduced to that of counting the number of configurations which lead to the

case of mA = j. We claim that the number of such configurations is less than or equal to CfL__j.

When m A = j, the obstructed node must be within the subcube 0 "-k-k, and all its j links

towards w must be faulty (i.e., j type-A blocking components). Although there are many possiblc

locations of the obstructed node, according to the systematic procedure of A 1, the location of the

obstructed node is determined by those non-type-A faulty links which are not within 0 n-k*k. Sup-

pose x = 0n'-k+Jlk-j is the obstructed node, then the j links of node x within SQ(x,w) are faulty and

there are cLj j different distributions of these non-type-A faulty links. When these non-typc-A

faulty links cause node y, instead of x, to be the obstructed node, we switch the links (including

11

February 9, 1989

faulty links) in SQ(y,w) to those in SQ(x,w), and obtain a configuration which leads to thc casc

when the obstructed node is y and m A = j. Notice that some of the Cf_ j different distributions of

non-type-A faulty links may lead to m A > j, meaning that the number of configurations leading to

mA = j is less than or equal to cL_j. This lemma thus follows. Q.E.D.

From Lemma 2, we can obtain the following theorem, showing that Algorithm A 1 can route

a message to the destination via an optimal path with a very high probability.

Theorem 3: Suppose there are f faulty links in a Qn. Algorithm A_ will route a messagc

from a node u to to another node w via an optimal path between u and w with a probability

k cL_J,greater than 1 - _ _--=-r- where L= n2 _t, and H(u,w) = k.
 qcf

Proof." From Lemma 2, the probability that A l has to use spare dimensions is _P(m h = j) <
j=l

k

k C_-J Thus, the probability that At will not use any spare dimension at all is 1 - _P(mA = j) >-j=l

k c _TJ Q.E.o.
1-ZcL.j=l

When there are n-1 faulty links in a Qn, the lower bound of the probability that AI will

result in the optimal path routing can be derived as follows.

Corollary 3.1: Suppose there are n-1 faulty links in a On. Algorithm A t will route a rncs-

sage from a node u to another node w via an optimal path between u and w with a probability

rio - rk) n-1

greater than 1 (l-q) , where H(u,w) = k and rI - n2_l.

Proof: From Theorem 3, we have

k L-" (n-1)(n-2)Cn-i_-j n-1 +
E L - L L(L-1)j=l Cn-l

(n-1)(n-2) • • • (n-k) n2,_1.
+' + :-- L-k- S ' whereL:

12

February 9, 1989

n-1 n-2

Sincer 1- L > L-1

n-k

L-k+l ' we get

c k c L_-i_j
_=' C_L_2 <rl+r2+ "'" +rkl-E j=j cnL_

This corollary thus follows. Q.E.D.

_>1-
q(1 - r_)

(l-q)

From Theorem 3, we derive Table 1 which shows the lower bound of the probability of A l

routing messages via optimal paths (we shall henceforth call this optimal path routing) betwccn

two nodes of Hamming distance n-1 apart in a Qn with f faulty links. It can be seen from

Theorem 3 that A_ will route a message to its destination via an optimal path with a rather high

probability in the presence of faulty links. Notice that the expression in Theorem 3 can also be

applied to the case that the number of faulty links is greater than n in a Qn. This is the very reason

that we included such cases as n=3 and f=5 in Table 1, i.e., f>n. Similarly to the case of faulty

links, the performance ofAl can be analyzed in terms of node failures as follows.

Lemma 3: Suppose there are g faulty nodes in a Qn, and messages are to be routed from an

arbitrary node u to another node w, where H(u,w) = k. Let mB be the Hamming distance betwecn

C N-3-j
8-J

the obstructed node and the destination node w. Then, P(mB=j)< C__2 if 2 <j < k, and

P(m B =j) = 0 ifj = 1 orj > k, where N = 2" is the total number of nodes in a Q,.

Proof: Following the same reasoning as in the proof of Lemma 2, we get P(mB>k)= 0.

Besides, P(mB=I)= 0 since the destination node is assumed to be non-faulty. Next, let a

configuration and the obstructed node be defined analogously to the case of faulty links. (Link

failures are replaced by node failures.) There are C_ -_- different configurations for a Qn with g

faulty nodes since the source and destination nodes are assumed to be non-faulty. In order to

determine P(mB=j), we need to count the number of configurations which lead to the case of

m B =j. By the same reasoning as the one used in the proof of Lemma 2, the number of such

13

February 9,1989

r y-:-3-j instead of c'N-2-J because theconfigurations is less than (-,N-3-j Notice that we use _g_j -g_j_g-j •

obstructed node must be non-faulty, and this lemma thus follows. Q.E.D.

From Lemma 3 and the reasoning in the proof of Theorem 3, we can obtain Theorem 4 and

its corollary, showing that A l can also route a message between any pair of non-faulty nodes in

an injured hypercube via an optimal path with a high probability.

Theorem 4: Suppose there are g faulty nodes in a Qn- Algorithm A 1 will route a message

from a node u to another node w via an optimal path between u and w with a probability greater

k C N-3-J

than 1 -]_ --g-J
C,,,_2g,, where H(u,w) = k.j--2

Corollary 4.1: Suppose there are n-1 faulty nodes in a Qn- Algorithm A 1 will route a rues-

sage from a node u to another node w via an optimal path between u and w with a probability

greater than 1 -
(n - 1)r2(1 - r_ -!) n - 2

, where H(u,w) = k, and r2 -
(2" - 2)(1 - rz) 2" - 3

Proof: Notice that

CnN_'_2

(n-1)(n-2) • • • (n-j+ 1)(n-j)(N-n-1)

(N-2)(N-3) • • • (N-j-2)

< (n-1)(n-2).'. (n-j+l)(n-j) (Since N-n-1 < N-j-2.)
(N-Z)(N-3)... (N-j-I)

k ,-,y-3-j __ n-1 ._-t-- ,g., "..'n-l-j

By letting g=n-1 in Theorem 4 we get 1 _ CnN.]2 > 1 j=_N_2r =

n-1 k i_ 1
1---2.,r _ = 1-

N-2j= 2

(n - 1)r2(1 - r_ -t)

(N - 2)(1 - rE)
, where N = 2 n. Q.E.D.

Again, from Theorem 4, we derive Table 2, showing the lower bound of the probability for

A ! to route messages via optimal paths between two nodes of Hamming distance n-1 apart in a

14

February 9, 1989

Qn with g faulty nodes. Furthermore, as it will be shown below, the expected length of a path

resulting from the use of A 1 is very close to that of an optimal path, i.e., the Hamming distance

between the source and destination nodes. Before analyzing the quality of the paths selected by

A1, it is necessary to introduce the following proposition.

Proposition 1: Let {Pi}in=l and {qi]in__l be, respectively, two decreasing sequences with

p,=q,=0.

n-I n--I

Suppose Pi < qi for 1 < i < n-l, then _'_ i(pi - Pi+l) < _i(qi - Ch+l).
i--I i=l

Proof: Let di = qi - Pi for 1 _<i < n. Then, we get

n--I n-1

_i(qi-qi+l)- _i(pi-Pi+l)
i=l i=l

(Since d i > 0 for 1 < i < n-1.) Q.E.D.

We can now derive the following important theorem.

Theorem 5: Let u and v be a pair of nodes with H(u,w)= n in an injured Q, which contains

n-1 faulty links. Let H l be the length of a path between u and w that is chosen by A t. Then,

n-1

E(AHI) < 2-_-_2, where E(x) denotes the expected value of a random variable x, and AHl = HI - n.

n-i

Proof." Notice that P(AH1 -> 2i) < _P(m A =j). Then,
j=l

n-I

E(AH1) = _2i P(AH1 = 2i)
i=!

= _=_112iI P(AHI > 2i) - P(AH1 > 2(i+1))]

n-I [n-i n-i-I]-<i___I2i EP(mA =j)- _ P(mA=j)j=1 j=1

n-l

= _2i P(mA=n-i)
i=l

(By Proposition 1.)

15

February 9, 1989

< E2(n-i)--
i=l CnLI

(By Lemma 2 and L = n2 n-l.)

< Z2(n-i)r_ (q=)
i=l

n-I
=2nEri-

i--I

=2nr I +2nrl(r I +r 2+...+r_ -2)

n-1
< 2nq = _-=-q-_. (Since nr1< 1.) Q.E.D.

2.-_

Using the same reasoning in the proof of Theorem 5, we have the following corollary for an

injured Q_ with n-1 faulty components.

Corollary 5.1: Suppose messages are to be routed from an arbitrary node u to another node

w in an injured Q. which contains n-1 faulty nodes. Let H 2 be the length of a path between u and

2n(n-1)(n-2)
w that is chosen by A1, and let AH 2 = H2 - n, where H(u,w) = n. Then, E(AH2) <

(2._2)(2n_3) '

3.3. Depth-First Search Routing and Other Remarks

Note that in the presence of more than n-1 faulty components in a Q., Algorithm A l, duc to

its simplicity, cannot ensure a faulty component not to be encountered more than once, and thus,

cannot always lead to a successful message routing. Depth-first search can be applicd to deal

with the problem of routing messages between connected pairs of non-faulty nodes in a hypcr-

cube with an arbitrary number of faulty components [27]. In such a case, a set of faulty com-

ponents encountered before has to be added to the message, and a more complicated procedure is

required to guide the backtracking whenever it is forced to backtrack from a deadcnd. Instead of

keeping track of the entire path traveled, the depth-first search routing can also be implemcntcd

by using a stack, in which case the operations required for backtracking are simplified, but addi-

16

February9, I989

tionalprovisionsareneededto ensurethatanodewill notbevisitedmorethanonce.Notethat

ourresultson theperformanceanalysisof A l can be extended and applied to the analysis of the

depth-first search routing. In order not to distract the readers from the main theme of this paper,

we have not included here such an extended analysis. Interested readers are referred to [28}.

Despite its limiting assumption on the number of faults, using the concept of spare dimen-

sions, Algorithm A 1 only needs to keep an n-bit vector (tag), and is shown to be very simple and

powerful. One cannot overemphasize two important aspects of this algorithm: the ability to route

messages via optimal paths with a high probability, and the fact that the expected length of a

resulting path is very close to the Hamming distance between the source and destination nodcs.

However, due to the absence of information at each node on components other than its own

links, the presence of a certain faulty component is not known until a message gets to the faulty

component. This may force an intermediate node to use a spare dimension for routing messages

around the faulty component, thus increasing the length of the actual path taken. Consequently,

in order to route messages more efficiently, each node needs to be equipped with more informa-

tion than that on its own communication links such that the faulty components on a path to the

destination can be bypassed.

4. ROUTING WITH LIMITED GLOBAL INFORMATION

As mentioned before, routing efficiency can be improved by increasing each node's infor-

mation on component failures. We shall examine the effects of failure information at each node

on the efficiency of routing. First, we shall propose and analyze in Section 4.1 a routing scheme

in which the condition of each component is not only known to its adjacent nodes but also avail-

able to those nodes one hop away from that component. Although this scheme improves routing

efficiency, the paths chosen are not guaranteed to be the shortest. Thus, we shall in Section 4.2

investigate the information essential for the shortest path routing. The approach of using network

delay tables [23] to the fault-tolerant routing in hypercubes with an arbitrary number of faults will

17

February 9, 1989

be discussed in Section 4.3.

4.1. Propagation of Failure Information to Neighboring Nodes

Consider a simple modified scheme of Algorithm Al. In addition to keeping track of the

condition of its own links, every node also makes this information available to all its neighboring

nodes. Thus, every node will know not only the condition of its own links but also that of those

links which are one hop away from it. To use this information, the conditional statement in A 1

marked with (_) is modified in such a way that every intermediate node checks one more hop in

the coordinate sequence of each message, and uses a spare dimension to bypass faulty com-

ponents if necessary. From a reasoning similar to the one in the proof of Theorem 2, it can be

verified that this modified muting scheme can also successfully route a message to any other node

if the number of faulty components is less than n. More specifically, the performance of this

modified muting scheme can be described by the following theorem.

Theorem 6: Suppose a message is to be routed in an injured Qn with f faulty links from

node u to node w where H(u,w) = k. Let m c be the Hamming distance between the obstructed

node and the destination when each node is informed about the conditions of its own links as well

j

as those links one hop away from the node. Then, P(mc=j)< _C_C_iJ-_J_I/Cf L if 2 _<j <
i=l

'_ o ko L-ik-k+2i
min{l+ ,k-ll,P(mc=k)-< _,_i _..f_ik_k+2i /C_,andP(mc=j)=0otherwise.

i=0

Proof: Let x denote the obstructed node. First, consider the case when the obstructed node

is the source node, i.e., mc = k. Clearly, x has k links within SQ(x,w). There will be no optimal

path from x to w if and only if each of these k links is either faulty or connected to a neighboring

node with k-1 faulty links toward w. Suppose x has exactly i non-faulty links toward w. Then,

there are Cik ways to determine which of x's links are non-faulty. For each case, there are (k-i) +

r, L-ik-k+2i
i(k-1) specific faulty links, thus resulting in _---f-ik-k+2i different configurations of faulty links.

The expression for the case of P(mc = k) thus follows.

18

February9,1989

Since every node is informed about the condition of the links one hop away, a message will

not be routed to any neighboring node whose every link toward w is faulty. Thus, every link of

the obstructed node toward w can be faulty only when the obstructed node is the source node.

This is the very reason that different expressions are needed for the cases of 2 < mc -<k-1 and

mc = k. Note, however, that when mc =j _ k and the obstructed node x has i non-faulty links

toward w, these i links are connected to those nodes with j-1 faulty links toward w. Therefore,

from the fact that the total number of faulty links i(j-1) + j - 1 is less than f, we get j < 1 + [-_,

and thus, this theorem follows. Q.E.D.

To illustrate the improvement of routing efficiency with the above additional information at

J
L-j L x-" _j_ L-ijTj-[-_2i /C Leach node, let hA(j) = Cf_j/Cf and he(j) = z_,_l_f_ij_j.i.2i t f. AS shown in Lemma 2 and

i=l

Theorem 6, P(mA= j) < hA(j) and P(mc= j) < he(j). It can be verified that he(j) < hA(j) for j > 2,

meaning that P(mc=j) has a smaller upper bound than P(mA=j). Note, however, that he(2) >

hA(2). This is based on the fact that, under our modified routing scheme, an intermediate node

located two hops away from the destination may foresee the unreachability from itself to the des-

tination and thus use spare dimensions to bypass those faulty components which could not bc

seen by the same intermediate node under A I. The upper bound of P(mc = 2) is thus greater than

that ofP(m A = 2). (Note, however, that he(2) < hA(2) + hA(l).) Therefore, in light of the reason-

ing in Theorem 5, routing efficiency is improved with the additional information at each node.

Note, however, that even the above routing scheme cannot guarantee the shortest path rout-

ing. When a pair of nodes communicate with each other frequently, it is desirable to have the

shortest path routing, since extra hops will otherwise be traveled during each transmission.

Although each node can always find a shortest fault-free path from itself to any other node if it

contains the information on every faulty component, it is impractical to maintain and update such

information, especially when the size of the network is very large. Therefore, it is important to

19

February 9, 1989

determine the information required for the shortest path muting.

4.2. Routing via Shortest Paths

To reduce the amount of information at each node required for the shortest path routing, the

unnecessary propagation of information on faulty components should be avoided. Notice that a

faulty node can be viewed as a node with its all links faulty. Therefore, the network information

kept at each node can be represented by a set of addresses of faulty links. As will be proved later,

when the number of faulty components is less than n in a Qn, each node does not have to pro-

pagate the information on faulty links to its neighboring nodes unless these faulty links block all

the optimal paths from itself to another node. In other words, only when node u finds that all its

optimal paths to another node, say x, have been blocked by a set of faulty links F, will node u

propagate the information on F to its neighboring nodes so as to prevent them from choosing

node u as a next hop toward node x.

Note that the coordinate sequence of an optimal path from u to w consists of H(u,w) dif-

ferent numbers representing those dimensions in which u and w differ, meaning that there arc

H(u,w)I different optimal paths from u to w. Then, we have the following proposition, describing

the effect of a link failure on the optimal paths between the two nodes.

Proposition 2: Let N(u\w, r) be the number of optimal paths from u to w which traverse a

link r. Then,

(i). For any link r _ SQ(u,w), N(u\ w, 0 = [H(u,w)-H(u,x)-l]!H(u,x)!, where x is the one of

the link r's two end nodes that is closer to u.

(ii). For any link r _/SQ(u,w), N(u\ w, r) = 0.

For example, if u = 0100, w = 1001 and r= 0-01, then x = 0101 and N(u\ w, r) = 2!1! = 2.

On the other hand, if r = 0-11, then N(u\ w, r) = 0, since 0-11 _ SQ(u,w) = **0". In light of Pro-

position 2, we can derive the condition for a set of faulty links to block all the optimal paths

20

February 9, 1989

between any given pair of nodes as follows. Let q and ry be the relative addresses of any two

links with respect to node u. Then, the link ry is called a downstream link of rx, written as rx < ry,

if rx appears before ry in an optimal path from u to r_-. Note that rx = x,x,_ l ".. x_ < ry =

YnYn-1 " " " Yt iff(I) Xi < Yi for I _<i _<n, where the symbol '-' is ordered such that 0 _<- _< I, and

(2) rx and ry are the links placed in different dimensions. This fact results in a straightforward

procedure for determining if a link is a downstream link of another. Each node can thus store the

relative addresses of faulty links as a partially ordered set [29]. A set of relative addresses of

faulty links is called a linear set if for any two links r_ and ry in the set, either r_ < ry or ry < rx. It

can be verified that an optimal path from u to w will traverse all links in a set of links B only if B

is a linear set. Let M(u\ w, F) be the number of optimal paths from u to w which traverse eveQ'

link in F. Then, following the concept of exclusion and inclusion [30], we obtain the following

theorem which can determine the number of optimal paths blocked by a set of faulty links.

Theorem 7: Given a set of faulty links F, the number of the optimal paths from u to w

I"

blocked by the links in F is N(u\w, F) = _".(-l)i+lmi, where m i = _ M(u\ w,Bi) and Bi
i=l Bi_ FcnSQ(u,w)

denotes a linear set of i links.

Clearly, the condition for a set of faulty links to block all the optimal paths between two

nodes u and w is N(u\w, F)= H(u,w)!. The operations of Algorithm A2 can be outlined as fol-

lows. Each node keeps the information about two types of faulty links in the form of relative

addresses. The first type, denoted by Fo, is the set of those faulty links whose status has not yet

been propagated to neighboring nodes, whereas the second type, denoted by F l, is the set of those

faulty links whose status has already been propagated to neighboring nodes.

Since relative addresses of faulty links of a node are kept in that node, the information on F0

must be modified in accordance with the addresses of receiving nodes when it is propagated to

neighboring nodes. A formal description of the algorithm for the determination and modification

21

February9,1989

of link failure information is given below.

Algorithm A2: Collection of failure information for the shortest path rou

Testing

/* Each node tests all its communication links.*/

if (the k-th link of the node is faulty) then
begin

Fl := Fl k..) {ek};

for i := 1 tondo

ifi _ k then send ek@e i along the i-th dimension;

Propagation;

end

Receiving

/* For each node receiving the information on the failure of the link r.*/

if r _/ F then /*F = F0 L.) F1 */

begin

Fo := F0 k.) {r};

Propagation;

end

Propagation

if N(0'N r-, F) = H(0_,r-)! then

begin

F0 := Fo- {r};

FI := FI L) {r};

/* Propagate the information on the failure of r to neighboring nodes.*/

for i := 1 to n do send rODei along the i-th dimension;

/* Check if propagation of information on other faulty links is necessary.*/

for all rx e F0 and r _ SQ(0", rx) do

if N(On_rx, F) = H(0 n, rx)! then

begin

/* Propagate the information on the failure of r to neighboring nodes.*/

for i := 1 to n do send rxl_ i along the i-th dimension;

F o := Fo- {r_};

Fi := FI L.) {rx};

end

end

22

February9, 1989

When a node receives the information on the failure of link r, it will update its Fo and F t

accordingly, and check if any further propagation of information on other link failures in F0 is

required. For example, consider the Q4 in Fig. 4. By executing A 2, each node can determinc

F = F0k..)F 1 as well as the information to be propagated to neighboring nodes, F I. Table 3 shows

the information to be kept in each node. Notice that the faulty links are represented in each node

by their relative addresses with respect to the node. Then, we have the theorem below.

Theorem 8: Under Algorithm A2, every node can obtain the failure information essential

for the shortest path routing as long as the number of faulty components is less than n.

Proof: Notice that the necessary and sufficient condition for all the optimal paths from node

u to node w to be blocked is that "for all z _ SQ(u,w) reachable from u via an optimal path, then

there is no optimal path from z to w." Since every node propagates the corresponding failure

information to its neighboring nodes if all its optimal paths to a certain node are blocked, the fact

that every node will know if all its optimal paths to a certain node are blocked can be proved by

induction.

When node u finds all its optimal paths to w are blocked, there are at least H(u,w) = k faulty

components in SQ(u,w). Note that there are still n - k disjoint paths of length k+2 via the neigh-

boring nodes of u which are not within SQ(u,w), and at least one of them is fault-free bccausc

there are at most n- 1 faulty components in the Q,. Since those neighboring nodes not having

any optimal path to w will propagate the corresponding failure information to u to prevent u from

choosing one of them as a next hop, this theorem follows. Q.E.D.

Theorems 1 and 8 lead to the following corollary.

Corollary 8.1: Algorithm A 2 can route a message from node u to node w in H(u,w)+2 hops

as long as the number of faulty components is less than n.

23

February 9, 1989

When a node needs to send a message to another node, it will use its information on faulty

components to determine the coordinate sequence of a shortest fault-free path to the destination

node as if it had the information on every faulty component in the entire network. Then, accord-

ing to the first entry of the coordinate sequence, the source node will determine the next hop of

the message and its associated coordinate sequence. On the other hand, when a node receives a

message and the coordinate sequence of the remaining part of the path, it will check whether thc

remaining path contains faulty links and permute the order of entries in the coordinate scquencc

to bypass the faulty components, if necessary.

For example, consider the injured Q4 in Fig. 4. The source node is not aware of any faulty

link, and thus, routes a message (3, [2,3,4], fm) to 0111. However, the node 0111 will find the

path [2,3,4] is faulty, since the path will encounter the faulty link 0-01 whose relative address is

0-01/0111 =0-10. Thus, a new non-faulty path [3,2,4] is determined by 011 I. The message will be

routed to 0011, and then to the destination 1001 via 1011. The length of the resulting path is 4.

This is far less than the length of the path determined by A 1, 8.

It is interesting to see that the information about an isolated faulty link needs to be pro-

pagated only to its neighboring nodes, whereas the information about clustered faulty links has to

be propagated a little farther to ensure each message to be routed via a shortest path. For cxam-

pie, node 1111 has to be informed by node 1101 about the failure 0-01 (two hops away) and 1-01

(one hop away), since all the optimal paths from 1101 to 0001 are blocked by the failure of 0-01

and 1-01. This agrees well with our intuition, since clustered faulty components are likely to

block more optimal paths between a pair of nodes, and thus, have to be kept by those nodcs far

away from them to achieve the shortest path routing. Clearly, when the size of the hypercube

increases, faulty components will tend to spread out and the size of the zone influenced by a

faulty component will become rather small relative to the size of the entire network.

24

February9,1989

Notice, however, when the number of faulty components is more than n-1 in a Q,, each

node may not be able to gather enough information required for the shortest path routing, since

too many faulty components may block the propagation of failure information.

4.3. Routing with Delay Tables

In the presence of more than n-1 faulty components in a Qn, the concept of using network

delay tables, which was previously used in the ARPANET [23], can be applied to accomplish the

shortest path routing. Under the algorithms in [23], every node maintains a network delay table

to record the shortest delay via each link of the node to every other node. When a node is to send

a message to another node, it will check its network delay table and determine the next hop of the

message for the shortest path routing. A minimal delay vector in a node, which contains the

delays of the shortest paths from that node to all the other nodes, is periodically passed to all of

its adjacent nodes as muting information. After receiving minimal delay vectors from its adja-

cent nodes, every node will update its network delay table accordingly. For example, the network

delay tables for nodes 000, 100 and 101 in Fig. 6 are given in Table 4a, 4b and 4c, respcctivcly.

The muting information generated by node 100 is also shown in Table 4d. As we pointcd out in

[31], looping may occur in the presence of component failures when this routing scheme is used.

The approach of using high-order routing strategies [32] can be applied to eliminate the looping.

It is worth mentioning that when the number of faulty components is less than n in a Qo,

Algorithm A 2 is shown to be capable of routing messages via shortest paths without using net-

work delay tables, and is thus preferred over the one based on network delay tables. Note that it

becomes very costly to maintain and update network delay tables as the size of a hypcrcube gets

large. It is therefore advantageous to use A2, whenever possible.

25

February 9,1989

5. CONCLUSION

In this paper, we have proposed and analyzed two distributed routing schemes (Al and A2),

and introduced two more schemes (using depth-first search and network delay tables), to route

messages in injured hypercube multicomputers. Al is very simple and powerful. It requires each

node to know only the failure of its own links and uses the abundant connections in hypercubes.

Performance of this scheme has been rigorously analyzed; we showed that this scheme is not only

capable of routing messages successfully in an injured Qn when the number of component

failures is less than n, but also able to choose a shortest path with a very high probability. To

handle the case when the total number of faults is greater than n-1 in a Qn, we introduced a rout-

ing scheme based on depth-first search. However, due to the insufficient amount of information

on faulty components, these two schemes do not always guarantee the shortest path routing.

To ensure the shortest path routing, we proposed A 2 which requires each node to be

equipped with more information than that on its own links. We developed a method which deter-

mines the failure information essential for each node to guarantee the shortest path routing. It

turns out that each node is required to know only the condition of a relatively small number of

components in its vicinity. In case there are more than n-1 faults in a Q,, we can use a more

expensive routing scheme based on network delay tables.

Due to their simplicity and/or power, the fault-tolerant routing algorithms derived in this

paper have high potential use for the growing number of fault-tolerant applications on large

hypercube multicomputers.

26

February 9, 1989

REFERENCES

[1] P.J. Denning, "Parallel Computing and Its Evolution," Commun. of the Assoc. Comp.
Mach., vol. 29, no. 12, pp. 1163-1167, Dec. 1986.

[2] P. Wiley, "A Parallel Architecture Comes of Age at Last," IEEE Spectrum, vol. 24, no. 6,

pp. 46-50, Jun. 1987.

[3] L.G. Valiant, "A Scheme for Fast Parallel Communication," SlAM J. on Computing, vol.

11, no. 2, pp. 350-361, May, 1982.

[4] M.S. Chen and K. G. Shin, "Processor Allocation in an N-Cube Multiprocessor Using
Gray Codes," IEEE Trans. on Comput., vol. C-36, no. 12, pp. 1396-1407, Dec. 1987.

[5] L.N. Bhuyan and D. P. Agrawal, "Generalized Hypercube and Hyperbus Structures for a
Computer Network," IEEE Trans. on Comput., vol. C-33, no. 4, pp. 323-333, Apr. 1984.

[6] T.F. Chan and Y. Saad, "Multigrid Algorithms on the Hypercube Multiprocessor," IEEE
Trans. on Comput., vol. C-35, no. 11, pp. 969-977, Nov. 1986.

[7] M. - S. Chen and K. G. Shin, "On the Relaxed Squashed Embedding of Graphs into a
Hypercube," SIAMJ. on Computing, 1989 (in press).

[8] B. Becker and H. U. Simon, "How Robust is the n-Cube?," Proc. 27-th Annual Symposium

on Foundations of Computer Science, pp. 283-291, Oct. 1986.

[9] Y. Saad and M. H. Schultz, Data Communication in Hypercubes. Dep. Comput. Sci., Yalc

Univ. Res. Rep. 428/85., 1985.

[10] C.L. Seitz, "The Cosmic Cube," Commun. of the Assoc. Comp. Mach., vol. 28, no. 1, pp.
22-33, Jan. 1985.

[11] NCUBE Corp., "NCUBE/ten: an overview", Beaverton, OR., Nov. 1985.

[12] E. Chow, H. S. Madan, and J. C. Peterson, "An Adaptive Message-Routing Network for thc
Hypercube Computer," Proc. of the Third Conf. on Hypercube Concurrent Computers and
Applications, Jan. 19-20, 1988.

[13] D. K. Pradhan, "Fault-Tolerant Multiprocessor Link and Bus Network Architectures,"
IEEE Trans. on Comput., vol. C-34, no. 1, pp. 33-45, Jan. 1985.

[14] J. G. Kuhl and S. M. Reddy, "Distributed Fault Tolerance for Large Multiprocessor Sys-
tems," Proc. 7-th Annual lnt' l Symposium on Computer Architecture, pp. 23-30, May 1980.

27

February9,1989

[15] A. H. Esfahanian and S. L. Hakimi, "Fault-Tolerant Routing in DeBruijn Communication

Networks," IEEE Trans. on Comput., vol. C-34, no. 9, pp. 777-788, Sep. 1985.

[161 A. Ghafoor, T. R. Bashkow, and I. Ghafoor, "Fault-Tolerance and Diagnosability of Bisec-

tional Interconnection Networks," Proc. 6-th Int'l Conf. on Distributed Computing Sys-

tems, pp. 62-69, 1986.

[17] D.K. Pradhan and S. M. Reddy, "A Fault-Tolerant Communication Architecture for Distri-
buted Systems," IEEE Trans. on Comput., vol. C-31, no. 9, pp. 863-870, Sep. 1982.

[18] A. Varma and C. S. Raghavendra, "Fault-Tolerant Routing of Permutations in Extra-Stage
Networks," Proc. 6-th lnt'l Conf. on Distributed Computing Systems, pp. 54-61, 1986.

[19] C. T. Ho and S. L. Johnsson, "Distributed Routing Algorithms for Broadcasting and Per-
sonalized Communication in Hypercubes," Proc. lnt'l Conf. on Parallel Processing, pp.

640-648, Aug. 1986.

[20] H. Katseff, "Incomplete Hypercube," Hypercube Multiprocessors, edited by M. T. Heath,

pp. 258-264, 1987.

[21] C. K. Kim and D. A. Reed, "Adaptive Packet Routing in a Hypercube," Proc. of the Third

Conf. on Hypercube Concurrent Computers and Applications, Jan. 1988.

[22] J.R. Armstrong and F. G. Gray, "Fault Diagnosis in a Boolean n Cube Array of Micropro-

cessors," IEEE Trans. on Comp., vol. C-30, no. 8, pp. 587-590, Aug. 1981.

[23] J. M. McQuillan and D. C. Walden, "The ARPA Network Design Decisions," Computer
Networks, vol. 1, no. 5, pp. 243-289, Aug. 1977.

[24] F. Harary, Graph Theory. Mass.: Addison-Wesley, 1969.

[25] E. N. Gilbert, "Gray Codes and Paths on The N-cube," Bell System Tech. J., vol. 37, pp.
263-267, 1973.

[26] Y. Saad and M. H. Schultz, "Topological Properties of Hypercubes," Res. Rep. No.

389/85., Dep. Comput. Sci., Yale University, 1985.

[27] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algo-
rithms. Reading, Mass: Addison-Wesley Publishing Co., 1974.

[28] M. - S. Chen and K. G. Shin, "Fault-Tolerant Routing in Hypercube Multicomputers Using

Depth-First Search," Technical Report No. TR-89-006, International Computer Science
Institute, 1947 Center Street, Berkeley, CA 94704, 1989.

28

February 9, 1989

[29] K. A. Ross and R. B. Wright, Discrete Mathematics. Englewood Cliffs, NJ.: Prentice Hall,
1985.

[30] C.L. Liu, Introduction to Combinatorial Mathematics. New York: McGraw Hill, 1968.

[31] K.G. Shin and M. S. Chen, "Performance Analysis of Distributed Routing Strategies Free
of Ping-Pong-Type Looping," IEEE Trans. on Comput., vol. C-36, no. 2, pp. 129-137, Feb.

1987.

[32] K.G. Shin and M. S. Chen, "Minimal Order Loop-Free Routing Strategy," IEEE Trans. on

Comput., 1989 (in press).

29

3
4

5

1 2 3 4 5 6

0.916 0.818 0.700 0.557 0.386 0.182

0.968 0.935 0.900 0.862 0.821 0.777

0.987 0.974 0.961 0.948 0.934 0.920

Table 1. Lower bounds of the probabilities obtained from Theorem 3 for the optimal path mut-
ing between two nodes of distance n apart in the presence of link failures.

2 3 4 5 6

4 0.989 0.967 0.934 0.891 0.838

5 0.998 0.993 0.986 0.977 0.965

5 0.999 0.998 0.996 0.994 0.992

Table 2. Lower bounds of the probabilities obtained from Theorem 4 for the optimal path rout-

ing between two nodes of distance n apart in the presence of node failures.

Nodes
0000
0001

0010

0011

01O0

0101

0110

0111

10O0

1001

1010
1011

11O0
1101

1110

1111

Fo
{0-01,1-01,100-}

{100-}

{0-10,1710}
{0-01,1-01,110-}

0

{0-10,1-10}

(OOl-)
{1-1o,o-lo,oo1-1

(_-olt
{010-}

(o-11,o11-}
{1-10,0-10]

F 1

(o-oo,_-oo)

®

[o-oo,_-oo1,
0

{ooo-]
[1:oo,o-oo,ooo-)..

{o-o_,o_o-)
{I-00,0-00)

Table 3. Information in each node generated by Algorithm A 2
for the injured hypercube in Fig. 4.

] (ooD
2 (OLO7
3 (loo)

010

5

011 100 101 110"

1 2

001 *

OO OO _ OO OO OO OO

3 1 2 3 4 2 3

4

111

(a). Network delay table of node 000.

"_"-----...._nation
dimensio_

1 (lOl)
2 (1107
3 (0007

000 001 * 010 011 101 110 * 111

3 4 4 3 1 3 2
oO oo oo _ oo c_o oo

4 2 3 3 3 4

(b). Network delay table of node 100.

1 (1007

2 (111)

3 (110)

000 001 *

5

010 011 100 110 * 111

4 3 3 2 3 2 1
OO OO OO OO OO OO OO

(c). Network delay table of node 101.

t1
001 * 010 011 1

14 2 3

101 110 111
1 3 2

(d). Routing information generated by node 100.

Table 4. Network delay tables for hypercube nodes in Fig. 6.

111o 1111

1/00 1101

0110

0101 0111

0010 0011

0001

1010 1011

1000 1001

Figure 1. A Q2 with address 0"1" in a Q4"

1110 1111

1100

0101

1101

0111

0010 0011

1010 1011

1000 1001

Figure 2. An optimal path from 0001 to 1010.

nlo 1111

1100 1101

0110 /

0101

0111

0010 oon

1010

0001

\

\ IOU

1000 lool

Figure 3. Four disjoint paths from 0000
to 0111.

1110 1111

II00

0110

0101

1101

0010 0011

0001

\

1010 1011

1000 1001

Figure 4. An injured Q 4 where links 0-01,
1-01 and 100- are faulty.

1110 1111

1/O0 1101

0110

0101

0111

O010 001.1

OO01 \

\

1010 _ 1011

1000 1001

Figure 5. An injured Q4 where links 0-11,
-011 and 111- are faulty.

__ 111

100

011

000 001

Figure 6. An example Q s for the routing scheme
based on the minimal delay tables.

